
ARCHITECTURE guidance series

Architecting a
Transportation Cloud
WHITEPAPER

nuvalence.AI Impactful Software Solutions

Architecting a Transportation Cloud NUVALENCE.AI 2

Purpose & Audience
Nuvalence specializes in architecting and
developing digital platforms for large
organizations. We’ve written extensively on the
topic of the general architecture of digital
platforms, including a whitepaper named

 The whitepaper
you are now reading is a domain-specific
extension of ,
focused on mobility and transportation
platforms in the automotive industry. While
reading first
is recommended, one will be able to read this
paper without that as a prerequisite and still
understand a majority of the content.

The intended audience for this whitepaper is a
technical leader within the automotive or
general mobility sector. Individuals in this
audience usually have Chief Technology Officer,
Head of Digital Platforms, or Chief Software
Architect titles or similar background. The
purpose of this whitepaper is to help these
individuals and their teams map business and
systemic realities in transportation use cases
(particularly autonomous vehicle use cases) to
a technical architecture. The details in this
paper are based on real-world experience in
mobility and structured thinking on the general
topic of building transportation clouds.

 The
Anatomy of a Digital Platform.

The Anatomy of a Digital Platform

The Anatomy of a Digital Platform

Understanding the Context
for a Transportation Cloud
Consumer demand for “connected devices”
exploded with the advent of the smartphone.
The two reasons for this are clear

 If computing power and internet connectivity
could fit in one’s pocket, anything could be
augmented to be “smart” and “connected”

 With this newfound in-pocket computing
power, everything else that was augmented
with computing and connectivity could now

be directly controlled by a smartphone.

The natural result for the automotive industry
was to create connected vehicles. For the first
time, cars were embedded with computing
power and eventually, with internet
connectivity. This meant that an individual
could start their car on cold winter days no
matter where they were, check maintenance
status while watching TV in their living rooms,
or remotely close windows during a sudden
burst of summer rain. All from their phone.
Additionally, vehicles started tracking
meaningful telemetry to report on health and
risk conditions, making that available for
backend systems to take action or for data
scientists to perform historical analysis.

Vehicles are undergoing a second era of
transformation. In a time where data is worth
more than ever before, vehicles are being
equipped with the ability to record massive
amounts of telemetry data. The ability to
control all aspects of the vehicle by API has
broadened. Possibly more importantly, vehicles
are moving away from being powered by fossil
fuels to being powered by electricity, all while
becoming autonomous. Use cases for what
vehicles can do are changing as a result.
Electric, autonomous, data-dense vehicles can
be used for anything from delivering pizza and
medical equipment to the safe transport of
loved ones to the airport. Need more use
cases? How about a patrol vehicle navigating
our communities to increase neighborhood
security. Being able to connect to a vehicle
from a phone is no longer considered
advanced, but instead, has become table-
stakes. What OEMs now need are
“transportation clouds” that take advantage of
autonomy being embedded in vehicles.
Transportation clouds exist to make these
vehicles, and the real-world use cases they
operate in, easily programmable. But what is a
“transportation cloud”?

https://nuvalence.io
https://nuvalence.io/white-papers/generalizing-the-architecture-of-a-digital-platform/
https://nuvalence.io/white-papers/generalizing-the-architecture-of-a-digital-platform/
https://nuvalence.io/white-papers/generalizing-the-architecture-of-a-digital-platform/
https://nuvalence.io/white-papers/generalizing-the-architecture-of-a-digital-platform/

A transportation cloud is a digital platform that exposes programmable “building blocks” to
enable the creation of solutions powered by autonomous vehicles and data. These use cases
can be B2B or B2C, impacting everything from how the companies transport goods to how one
might hail a taxi. A transportation cloud includes the cloud-based APIs, data, and vehicle
connectivity components provided to developers as a coherent platform equipping them to build
mobility-enabled solutions. Are you interested in partnering with an OEM to build a mobile
application to provide a courier service to consumers via self-driving cars, or an app to analyze
vehicle congestion? An OEM’s transportation cloud is the cloud-based backend for those and
many other use cases. Without a transportation cloud, democratizing the creation of mobility
solutions becomes impossible.

The next natural question is: what does the architecture for a transportation cloud that enables
“programmable transportation” look like? Answering that question requires understanding the
unique considerations specific to the mobility domain.

Key Architectural Considerations
In a transportation cloud, the core architectural tenet is enabling developers to treat vehicles,
their data, and their tasks as resources they can program to build new “mobility enabled”
solutions. Partners to OEMs integrate via APIs with a transportation cloud to gain control of a
vehicle to perform tasks, control the vehicle’s in-cabin experience, and orchestrate
sophisticated logistics outcomes. This is not dissimilar from many other digital platforms. The
pattern is to create a robust, scalable system that is exposed to 3rd parties who can build
new commercial solutions. The aforementioned implies five specific key considerations that
build atop of the general considerations presented in
whitepaper. A summary of those considerations is as follows, followed by a section with
deeper dive commentary

 Transportation clouds need to optimize for both data and workflow heavy workload
expectations: Digital platforms are often optimized for workflow use cases (e.g.
transactions and logic) or data use cases (e.g. analytics). Given the intense reliance on
both active workflow execution and both real-time and at-rest data, architectures
supporting mobility use cases aren’t aligned more with one than the other. They’re aligned
with both equally and a supporting transportation cloud must optimize for both workload
types. This challenge is best solved by creating purpose-built sub architectures: one
focused on data, the other focused on orchestration, and thoughtfully fusing those
together into a clean platform experience

 Transportation cloud transactions are event-driven, with low predictability on event
timing, event reliability, and ordering: When building a platform for an industry like
banking, predictability of transactions drastically simplifies things. Moving money, creating
accounts, and other banking transactions are very deterministic in how long they generally
take, what order things execute in, and what success and failure look like. This simply isn’t
the case with transportation. Successful trips could be minutes long, while others could be
hours long. Vehicles, people in those vehicles, and the real world context they all operate in
all do lots of unpredictable things and in unexpected orders. What system, for example,
can plan for a sudden rainstorm that makes driving unsafe? Transportation clouds need to
have an event-oriented architecture with appropriate support for event processing and
associated state management.

The Anatomy of a Digital Platform

NUVALENCE.AI 3Architecting a Transportation Cloud

 Transportation

 Transportation

https://nuvalence.io/white-papers/generalizing-the-architecture-of-a-digital-platform/

 Vehicles are a primary and chaotic actor: In many industries, digital platforms support
primarily deterministic inputs and systems. Platforms that interface with real world actors
often face the opposite: significant non-determinism, which leads to unique architectural and
engineering requirements. While related to (2), it is important to call out that the core actor
in a transportation cloud, the vehicle, can exhibit chaotic behavior. This requires a “failure is
expected” architecture to support the potential failure of the focal point of nearly every
transaction in the system: a vehicle

 Streaming architecture characteristics are part of expected systems behavior: Most
“standard” digital platforms execute workflow logic that depends on static data at-rest (e.g.
load data to support logic being executed). Executing that logic follows traditional patterns:
run logic, load data, reason over the data, and influence the logic. The data component has
little “critical path” architectural expectations given its at-rest nature. Transportation clouds
are different. Central transportation clouds need to initiate workflows that then depend not
on static data, but on real time streaming data such as vehicle position streams. This implies
that while events, per consideration (2), trigger workflows, those workflows need to rely on
streaming data to make decisions. Streaming data is generally real time, which almost always
implies that the value of the data diminishes as it gets older. The result is that latency can
drastically reduce the value of data, or in some cases, make it completely irrelevant

 Governance, Regulatory & Compliance (GRC) requirements are yet to be defined,
requiring a flexible architecture: Transportation cloud services, particularly when coupled
with autonomous vehicles, may have meaningful GRC implications. Unfortunately, because of
the nascent stage of the industry, many of those implications are not yet known. Industries
like banking and aviation have been regulated for decades. As a result, the approach to
Governance, Risk & Compliance (GRC) is more stable. GRC in autonomous mobility and
transportation is in its infancy, with much of it still needing to be defined. That said, a
transportation cloud can’t ignore GRC needs. Instead, a transportation cloud needs to
provide flexibility that as GRC expectations emerge, they can be accounted for using a
bespoke transportation cloud built today. The result is that a transportation cloud must be
built to adhere to, and iterate on, evolving GRC requirements.

Each of these considerations could be written about at depth. While this paper will not cover
each to the fullest extent, it will explore how each consideration impacts the architecture of a
transportation cloud.

While most platforms have both data and workflow components, one tends to drive the core
orientation of the platform (as described in Transportation
clouds have a more sophisticated need than a standard platform: both workflow and data
components take equally prominent roles in core use cases. Building a single platform that
optimizes for both data and workflow use cases would be extraordinarily difficult. A better
approach is to build a transportation cloud that fuses a workflow-oriented platform with a data-
oriented platform. Understanding why this approach is recommended is best understood by
example.

The Anatomy of a Digital Platform).

NUVALENCE.AI 4Architecting a Transportation Cloud

 Transportation clouds need to optimize for both data and workflow heavy workload
expectations

 Vehicles

 Streaming

 Governance

https://nuvalence.io/white-papers/generalizing-the-architecture-of-a-digital-platform/

 - the flagship use case for a transportation cloud is to allow its consumers to
programmatically move a vehicle from one location to another. Consumers of the platform
build their use cases on top of that primitive: ride hail, food/package delivery, patrol vehicles,
and many other yet-to-be-imagined use cases. Behind the scenes there are a number of
workflows internally which support this (vehicle management, billing and payments, routing,
etc)

 - the workflow use cases tend to rely not only on data at-rest, but on real time data
coming from real world actors like people and vehicles. Some of that data may have stream-
like semantics (this is broken out as a core consideration for transportation clouds and
discussed later in this paper). The result is that data plays not only the traditional role of
being stored/retrieved, but also plays a role in analytics/optimization, and it actively modifies
real time outcomes through the interplay with active workflows. Data use cases in
transportation clouds include

 Analysis of historical data to optimize for key performance indicators (eg: utilization of
vehicles, customer satisfaction ratings, capacity/load ratio)

 Onboarding many vehicle providers - while an MVP will focus on one flagship vehicle
model, over time onboarding vehicles can be simplified and even productized. Building
data ingestion workflows with the assumption that, over time, the platform will receive
data from many types of vehicles in potentially different formats or via different protocols
allows the platform to be adaptive as technology changes and improves over time.

 Productization of this data - the platform will amass rich data on traffic patterns and
transportation trends; this is impactful data for a number of use cases beyond
functionality of the transportation cloud itself.

Taking the approach of fusing a workflow and data platform into a single layer ensures that the
features in each can optimally support use cases in their respective categories. Furthermore,
this sort of clear architectural delineation will help features evolve more cleanly over time since
they can remain aligned with their respective domains.

WORKFLOW

DATA

NUVALENCE.AI 5Architecting a Transportation Cloud

 WORKFLOW

 DATA

 Transportation cloud transactions are event-driven, with low predictability on event timing,
event reliability, and ordering

Many transportation workflows will begin with some event generated by a user or a vehicle.
These events are non-deterministically generated and may not follow an expected or prescribed
pattern. A transportation cloud should heavily rely on distributed, event-based models. Platforms
of this type should leverage queueing of events to allow for greater durability and scalability of
the platform. Attempts to use traditional request/response style architectures would ensure the
opposite: lack of scalability and low availability. Examples of transactions that warrant an event-
driven core architecture model include

 All trip management transactions, including requesting trips, modifying trip parameters, and
canceling trips. An event-based architecture allows a transportation cloud to reconcile
bidirectional events (from the cloud to the vehicle and vice versa) to transactions currently
being processed. For example, while creating a new trip is a trivial request, knowing that a
vehicle has accepted it and is on-task for the trip is a multi-leg communication with many
potential points of failure and latency. Waiting for a transaction of this type to complete
would undoubtedly result in timeouts or complex remediation logic if not event-driven.

 Vehicle control directives such as remotely unlocking a vehicle or requesting that an AV pull
over. Similar to (1), a cloud platform requesting to control in-cabin or vehicle functions cannot
block waiting for a result. Blocking and waiting for a result would meaningfully impact
scalability and reliability

 Unexpected events generated by the vehicle. While (1) and (2) exemplify scenarios where the
cloud originates a transaction and then reconciles events related to that transaction with the
original call, sometimes a vehicle will publish an event to the transportation cloud. In these
circumstances, the vehicle is simply notifying the cloud of some issue or change in state
(such as an unexpected pullover event). This would trigger logic specific to that vehicle-
originated signal. There is no practical way to implement a system for this that isn’t event-
based, particularly given the “fire and forget” nature from the vehicle’s point of view.

Clearly, exceptions to this rule exist. In circumstances where transaction times are within
predictable bounds (and don’t depend on real world actors) and scalability may not be a critical
concern, a request/response style pattern is best suited.

What makes this an especially important consideration is the skill set required to build this sort
of backend. Architects and developers who have built at-scale cloud and distributed
architectures need to be involved to build this successfully.

NUVALENCE.AI 6Architecting a Transportation Cloud

 Vehicles are a primary and chaotic actor

While connected vehicles have become commonplace, the majority of time a consumer does not
care if their vehicle is actively connected. From the consumer experience point of view, data
generated during periods of connectivity loss isn’t critical to the operation of the vehicle.

Within a transportation cloud, data that is not important to the consumer or partner is critical
to operations of key services, so safeguarding for slow and intermittent connectivity should be
planned upfront for all interactions with the vehicle.

 - Communication to and from the vehicle should
leverage some bidirectional streaming protocol which supports buffering on each side of
data which can’t be sent due to connectivity issues. Consider assigning event priorities. For
example, events generated periodically (eg: fuel level, current location) decrease in value as
they become stale in that buffer, this data can “age out” or be deferred for more relevant
events when connection is reestablished. If that low priority data is useful only from the
historical analysis perspective, it can be written to a disk onboard the vehicle and uploaded
to the platform when it is not in operation and has a good connection. Conversely, high
priority events (eg: critical vehicle hardware malfunction) should not age out and should be
the first events communicated up to the platform when connection is reestablished

 - To account for vehicle events being received out of order, at a
delay, or not at all, a platform-level event coordinator is required. The coordination service
can determine, with the help of data it has about the state of the world, whether events
should be:

 discarded; e.g. a position event from yesterda

 remediated; i.e. an event indicating the vehicle is performing an action very different from
what the platform expects it to be doin

 deferred; i.e. an event that is normal but the platform handles it in conjunction with some
other event data which may take a few seconds longer to arrive

 Bidirectional Communication

 Event Coordination

 Bidirectional

 EVENT

NUVALENCE.AI 7Architecting a Transportation Cloud

 Allow Vehicles to Make Decisions

 Monitor Vehicle Connection Health

 - Decide what logic can be decentralized
(contained on the vehicle). Having software on the vehicle to handle common events it
generates allows not only for a faster response, but also for the vehicle to be more self-
sufficient. The vehicle will need to know how to operate when it runs out of commands from
the platform - likely move to an area that is safe to park until it is given further instructions.
A simple heuristic for determining whether a piece of logic can be decentralized is if the
vehicle is sending some event up to the platform only to be informed how to respond to that
very event. Decentralizing logic not only reduces data and latency, but also provides some
peace of mind that the vehicles are operating in a safe manner when they do get
disconnected from the platform

 - Knowing when a connection is unstable or
even lost is valuable to logic contained by the transportation cloud, on the vehicle, and for
operations of the service. If the protocol used for vehicle communication does not support
this out of the box, consider building a bidirectional heart-beating mechanism such as keep-
alive pings. When these disconnects occur, the data platform can trigger an event which
notifies any interested parties (either software or human).

 ALLOW

 MONITOR

 Streaming architecture characteristics are part of expected systems behavior

As described in the general purpose Nuvalence whitepaper ,
platforms are often built with emphasis on either workflow oriented workloads, or data oriented
workloads. The nature of a transportation cloud requires significant architectural emphasis on
both. Data generated in a mobility ecosystem is a combination of real time streaming data
(vehicle telemetry, position data) and at-rest data elements, which provide the backbone for
platform execution. When asynchronous workflows triggered by events are executing, they often
depend on real time streaming data to execute their logic. This implies that thousands of
simultaneous events will need performant access to these data streams. This introduces a
number of key considerations, including

 Streaming vehicle position up to the data platform - architecting the platform to properly
handle high streaming volume for a large fleet of vehicles, normalizing said position data,
and efficiently distributing position data to dependent components in the platfor

 Allowing for a potentially large number of actors to tap into streaming data efficiently,
which may in turn, require thoughtful partitioning strategies for inbound stream

 Incorporate authorization so that only platform components that have the right to access
certain streaming data actually do

Location data is particularly critical, especially when it comes to operational continuity and
optimizing mobility efficiency. Often, the same data that is used on-platform to validate and act
on requests can be used by consumer applications to improve user experience. Designing
location APIs in a way that can be leveraged effectively both on and off platform allows
consumers to build more robust solutions.

 Routing & Arrival Times - routing can be decentralized, and doing so reduces data volume
and allows autonomous vehicles to adjust in response to their environment. Consumer
applications that display routes and arrival times to their users will need access to routing
APIs to ensure the information shown to end users is comparable to the route chosen by the
vehicle. This guards against the consumer application telling a user their vehicle is 5m away
while the vehicle determines it needs to take a long detour.

The Anatomy of a Digital Platform

https://nuvalence.io/white-papers/generalizing-the-architecture-of-a-digital-platform/

NUVALENCE.AI 8Architecting a Transportation Cloud

 Mapping “Drivable” and “Non-Drivable” Areas - the vehicle position or a location defined in
the request to move a vehicle will often need to be cross referenced against contextual data
that is geospatially bounded. For example, the bounds of a city where the service is
operational or zones where vehicles cannot drive due to road closures

 Displaying Location Data to Users - while platform components will communicate location
data using exact coordinates, users will expect to consume that same information formatted
as addresses. A centralized API for geocoding and reverse geocoding ensures that as
independent user-facing applications convert coordinates to and from addresses the data
remains consistent.

Given the introduction of autonomy and new modes of mobility, the GRC space will rapidly
evolve. Currently, however, the industry is at a nascent stage, making concrete GRC
expectations unlikely and impractical. There are two options from an architecture perspective:

 Build a transportation cloud void of any GRC requirements and bolt them on late

 Build a flexible GRC capability without any rigid expectations, and leverage that flexibility to
comply to GRC requirements later

While (2) is an implementation detail of (1), it’s important to call out separately. Many initiatives
and architecture strategies would prefer to avoid “over-architecting” or not building something
that isn’t needed. While generally that’s a prudent decision, given the timeline, a more intelligent
option would be to build flexible auditing, data compliance, and tracing capabilities. That would
allow the architecture to “pre-pay” some compliance costs early through abstraction. While
likely over-architected for base cases, there are some known near-term legal and compliance
considerations which come with all platforms (terms and conditions, data privacy, etc). In the
case of autonomous vehicles, these requirements are actively being debated and are likely to be
highly fragmented between countries, states and even municipalities. Incorporating a general
purpose set of architecture building blocks for addressing those needs over time will reduce risk
and overall long term compliance costs.

The aforementioned considerations help shape the overall architecture of a transportation cloud.
Before defining a detailed component architecture, a higher level visualization of the first
consideration (transportation clouds need to optimize for both data and workflow heavy
workload expectations) alongside vehicle and client-application actors is necessary.

 Governance, Regulatory & Compliance (GRC) requirements are yet to be defined, requiring
a flexible architecture

Bird’s Eye View of a Transportation Cloud Architecture

NUVALENCE.AI 9Architecting a Transportation Cloud

When this paper describes the “fusing” of data and workflow platforms, it implies an input/
output loop where workflow transactions depend on data from the data platform, and then
produces new data that feeds back into the data platform: a positive feedback loop. That
feedback loop operates in a broader, coarse-grained ecosystem that includes software on the
vehicle and client software that depends on the platform for its capabilities

 Software Onboard Vehicle represents all decentralized logic. This will include routing, the
driving system for autonomous vehicles, event-driven logic that was intentionally
decentralized, implementation of the bidirectional streaming connection to the data platform.

 Data Platform holds not only the data retention and analysis features described above, it
provides the interface for communication with vehicles. Features include: data cataloging,
prioritization, buffering, and standardization/cleansing from many sources.

 Workflow Platform is the recipient of information streamed from the data platform and also
communicates its own data back. It can act only on the data that is relevant without needing
to consider analytics and retention use cases. Features include: vehicle management,
transportation requests, notifications, location intelligence, billing.

 External Client App the direct consumer of the transportation cloud, creating a mobility-
enabled solution out of the published “building blocks” and available data from the workflow
platform and data platform, respectively.

Special consideration is required for the data platform.

Data Platform

Given the volume and complexity of data involved in a transportation cloud, a dedicated
platform for data is recommended. The data platform needs to consider both real-time
streaming and analytics as its top two use cases. In either case, a partitioning strategy is
critical. A generally useful partitioning strategy is by vehicle model. Partitioning by vehicle
model allows for an apportioned allocation of platform resources by popularity and alignment
by vehicle features. The generalized data platform in this paper reflects this. In practice,
partitioning (or sub-partitioning) on other dimensions might prove more practical.

NUVALENCE.AI 10Architecting a Transportation Cloud

This component diagram assumes a fairly mature platform which supports vehicle data providers
in potentially many formats and/or protocols as well as external consumers of the data. The
components in this architecture are as follows

 Data Normalization - as technology onboard the vehicle is improved, it is likely the case that
different vehicle models will communicate similar data over different protocols or in different
formats. This component will be responsible for normalizing the vehicle data to a platform
standard representation and pushing it to the common Vehicle Event Gateway. As with
consumer applications, initially this will be done internally for validation of the approach, but
going forward partners could build their own integrations for data ingestion.

 Vehicle Event Gateway - standardized stream of temporally consistent data

 Real-Time Data Enrichment - enriches streaming data with metadata stored on-platform to
ensure contextually rich data is delivered to consumers while the data volume from vehicles
themselves remains relatively small.

 Data Cataloging Service - writes all data from the Vehicle Event Gateway to a platform data
lake to be used by analytics applications and data access APIs later.

 Live KPI Computations - performs computations of KPIs and metrics which must be done
live (with low latency). These may in turn become new events on the vehicle event gateway
for streaming consumers, be written to the data lake, or be written to a time series database
optimized for rolling them up to aggregate KPIs.

 Analytics Applications - perform computations and analysis of data in the data lake or time
series database. Results of which could then also be cataloged

 Analytics Dashboard - user interface for live and historical data of interest from a business
or operational perspective.

 Data Access API - public facing interface for the data platform; provides methods for
retrieving historical and time series data as well as bidirectional streaming of vehicle events.

 Data

 Vehicle

 Real-

 Data

 Live

 Analytics

 Analytics

 Data

Workflow Platform

All digital platforms are a combination of ‘Core Services’ focused on supporting horizontal
concerns (e.g. logging, tracing, state management) and ‘Domain-Specific Services’ built to
address business considerations in that given domain. In a transportation cloud

 provide a general execution environment with traceability, logging,
observability, multi-tenancy, platform component management, scalable state and workflow
managemen

 supporting the transportation domain with capabilities such
as vehicle dispatching, location services, vehicle management, among others

This component diagram is inclusive of both the workflow domain-specific services
enumerated above as well as some generalized platform architecture componentry that will
help to accelerate the development of scalable domain-specific services.

Core Services

Domain-Specific Services

 CORE

 DOMAIN

NUVALENCE.AI 11Architecting a Transportation Cloud

Cloud Infrastructure

 Data Stack - independent of the data platform; while the workflow platform is not
responsible for holding historical data for the business analytics use case, there will still be a
need for services to store their own platform data using appropriate data stores provided by
the underlying infrastructure.

 Billing - for both invoicing consumers and allowing consumers to bill end users.

 Dispatching - integrates with the data platform for dispatching events to vehicles.

 Vehicle Management - managing the set of vehicles available for requests.

 Location Intelligence - routing, geocoding, reverse geocoding, relational geospatial queries
for location aware metadata.

 Entitlements System - authorization rules for how components of the platform interact.

 Tenancy System - provides onboarding for partners building consumer applications and
hooks for provisioning isolated data or components.

 Notifications - notification system for real time data streamed to consumer applications.

 Observability - centralized logging, monitoring, and platform health provided to all services
on-platform.

 Workflow API - the publicly facing common experience user interface which ties domain
services into a single user facing product.

 Data

 Billing

 Dispatching

 Vehicle

 Location

 Entitlements

 Tenancy

 Notifications

 Observability

 Workflow

NUVALENCE.AI 12Architecting a Transportation Cloud

A transportation cloud has the same requirements of any digital platform when it comes to
building an ecosystem of solutions around a core offering. Transportation is quite complex:
actors operating on tasks for indeterminate amounts of time with unpredictable behavior at
extreme volume across the globe creates special consideration.

When considering building a transportation cloud, it can be hard to decide where to start.
Nuvalence has spent considerable time and energy solving these problems in the mobility
platform space. While this paper only scratches the surface, hopefully it provides seminal
insights and a framework that will help in developing a broader transportation cloud strategy.

Conclusion

ABOUT NUvalence

Nuvalence is a next-generation consulting firm specializing
in mission-critical, intelligent platforms for the world’s
most ambitious organizations.

Using our product-driven, AI-centric approach, we
empower organizations to build for the intelligent digital
future. Our elite team of product leaders, data scientists,
designers, and software engineers enables our clients to
solve their most complex technology product challenges
and positively impact people and the world.

We don’t just deliver software, we deliver outcomes.

© 2024 Nuvalence, LLC. All rights reserved. This document is for informational purposes only. Nuvalence, LLC makes no warranties,
express or implied, with respect to the information presented here.

	Architecting a Transportation Cloud
	PAGE 2
	PAGE 3
	PAGE 4
	PAGE 5
	PAGE 6
	PAGE 7
	PAGE 8
	PAGE 9
	PAGE 10
	PAGE 11
	PAGE 12

