
ARCHITECTURE guidance series

The Anatomy of a 
Digital Platform
WHITEPAPER

nuvalence.AI Impactful Software Solutions



The Anatomy of a Digital Platform NUVALENCE.AI 2

Purpose & Audience
When building a digital platform and bringing it 
to market, just knowing where to start and how 
to approach the effort can be overwhelming. 
After reading this paper, the hope is that you 
will be armed with a practical framework to ask 
the right questions, make the tough decisions, 
and execute successfully. The intended 
audience of this paper is a Chief Digital Officer, 
Head of Digital Platforms, Chief Technology 
Officer, Lead Architect, or anyone tasked with 
building a digital platform.


Understanding the Context
Over the past two decades, consumer 
expectation has put tremendous pressure on 
all companies to build and deliver applications. 
Consumers are no longer content with 
physical experiences, they demand digital 
experiences to supplement their physical 
world (smart homes, wearables, digitally-
enabled shopping experiences, etc). To 
succeed, companies need to have ambitious 
digital strategies - they can no longer just 
build apps, they also need to build digital 
platforms to capture and support an 
ecosystem. The best and most successful 
digital organizations start with digital products 
that nearly always evolve into “digital 
platforms.” 



While “platform” is often used to describe 
things like Kubernetes or AWS, those are 
horizontal technical platforms. A digital 
platform is taxonomically best described as a 
domain-specific platform (e.g. automotive, 
healthcare, banking, retail) that abstracts 
common, high-value functions in a technology 
ecosystem into a shareable set of data, APIs, 
components, and capabilities. 3rd-party 
organizations can tap into these domain-
specific “digital platforms” and build apps that 
create value for end-users that is 
complementary to a core “anchor application.”


This benefits:

 End-users, by providing them access to a 
rapidly evolving value stream

 Internal and external developers, by 
reducing technology implementation and 
market entry costs

 The platform provider, with a nearly 
unshakeable market position as its 
ecosystem of producers and consumers 
expands. 



In some cases, the platform may actually make 
previously inaccessible markets accessible to 
3rd-party organizations (for example, in 
healthcare or banking where the regulatory 
hurdles are generally too high for new 
entrants). 



What might be most interesting in all of this is 
digital platforms in the context of existing 
enterprises. Existing, large organizations have a 
unique opportunity to leverage their 
entrenched market positions and significant 
assets (data, existing client relationships, 
access to capital). This advantage can help 
power a platform strategy with even more 
disruptive leverage and disintermediation 
potential than what’s available to their nimble 
startup competitors. Incumbent leaders can 
extend their leadership power and own next-
generation digital ecosystems in their markets.



While it’s critical to understand the strategic 
context, this whitepaper will focus on how to 
approach the practical implementation of a 
digital platform. At a cursory level, the concept 
of a digital platform is best described as a 
technology layer that displays the following 
characteristics:

 Provides tangible, specific value to 
consumers (both business and end user) by 
solving a problem in that consumers domain 
(this is the “killer app” that is at the core of 
the platform).



 Accelerates the development of new applications by teams in your organization as well as by 
3rd parties

 Displays flexibility in the range of use cases to which the platform can be applied to over 
time. It’s often the case that the initial use cases and modalities become less relevant over 
time, so a platform should morph to fit contemporary use cases.



To start this exercise, we must first define “digital product.” Digital products/services tend to be 
sufficiently defined as a technology where the original developer of that technology has a tight 
grip over the use cases and is the only party adding features to the technology. Many 
traditional SaaS offerings fit this static definition. In order for a digital product to become a 
digital platform, it is necessary to display characteristics 2 and 3. This implies a technical 
architecture that goes beyond a standard app or technology offering. The architecture needs to 
provide the ability for 3rd parties to safely drive value creation, and for maximum adaptability to 
ever-changing use cases. 



This paper has two parts: (1) understanding the requirements of a platform and (2) designing 
an architecture to satisfy them.

Requirements

The components that define a platform aren’t as obvious as one might think, primarily 
because characteristics 2 and 3 are supported by a deep set of subsystems. A requirements 
gathering exercise will help clarify this. To start, let’s look at questions that can help outline 
the requirements of characteristic 2:


This defining characteristic carries meaningful technical implications. Developers of a digital 
platform need to answer a few questions about the intended business goals and target state 
of the platform in order to understand how to approach enabling this characteristic

 Does the platform lean more toward being a data platform or a workflow platform? Nearly 
all platforms have a data and a workflow/logic component, but tend to lean more toward one 
or the other when attempting to commoditize patterns and boost developer productivity. 
Organizations focused on aggregating and correlating market transaction data or collecting 
high volume data from IoT devices, for example, may deliver the most value by abstracting their 
data architecture into a platform. Others who focus on payment processing, 3D rendering, or 
health insurance claims as examples might find that capturing their workflows and 
commoditizing development around those workflows provide the most value to developers.  

When defining a platform, is it more data-centric or more workflow-centric? This centricity 
decision will influence many details of the platform implementation

 What are the platform’s execution models? Execution models are defined via two 
dimensions: (1) the interaction model (API, plugin, etc.) and (2) where a client application is 
hosted (off-platform or on-platform). A platform can be built to have one or more of these 
execution models, but it must have at least one:

NUVALENCE.AI 3The Anatomy of a Digital Platform

 Accelerates the Development of New, 3rd-Party Applications that Sit Atop the Platform


 Does

 What

https://nuvalence.io


NUVALENCE.AI 4The Anatomy of a Digital Platform

API Platform Domain-Specific 
Framework

Plugin Rapid Application 
Development IDE 

Off-platform/External On-platform On-platform On-platform

The platform exposes 
functionality to 3rd- 
party apps via APIs. App 
developers need to 
decide where these 
apps will run since the 
platform does not 
provide a hosting 
capability. 



The platform markets 
itself as a metaphorical 
“hub” and acts as a 
critical data and 
workflow broker 
between app providers 
and end-users. 



Having APIs and taking a 
market position as a 
“broker” is the bare 
minimum expected of 
any platform.

The platform selects/
creates and then layers 
a domain-specific 
framework atop a well-
accepted platform stack 
(e.g. Kubernetes, 
Lambda), offering it as 
an integrated cloud to 
their ecosystem. 



The intent is to afford 
developers the flexibility 
of a general purpose 
programming language  
model (e.g. Java, 
JavaScript, C#, etc.) 
while providing domain-
specific runtime 
services (e.g. big data 
access, regulated data 
access, massively 
parallel execution 
systems).



Domain-specific 
platforms host apps 
because accessing the 
data or the 
programming model is 
impractical off-platform.

3rd-party apps may 
need to replace or 
modify standard 
behavior in the anchor 
app or in the platform. 
This is done via a plugin 
model.



The platform provides 
an embedded code 
execution model where 
developers can write 
plugins and extensions 
to the anchor tenant 
application via an 
extensibility framework. 
This framework has to 
ensure runtime safety 
for the app so that 
errant plugins don’t ruin 
the user experience. 



End users can select to 
install 3rd-party plugins 
from a marketplace. 
Plugins may be partially 
(e.g. front-end) or 
wholly (e.g. front-end + 
back-end logic) hosted 
by the platform 
provider.


The platform provider 
not only hosts guest 
apps, but also requires 
the use of proprietary 
development frameworks 
and programming 
languages. Generally, 
this requirement is in an 
attempt to maximize 
productivity, even if at 
the expense of flexibility.



These platforms tend to 
focus on technical 
“power users” rather 
than developers, but 
often provide a way for 
more sophisticated code 
to be written via a plugin 
model. This execution 
model generally includes 
a powerful development 
environment and 
shouldn’t be confused 
with highly flexible 
“power user” focused 
features.

In designing a digital platform, this trade-off will be one of the most important design 
considerations. A platform provider may choose to align with a particular model for strategic 
reasons, while in some cases, may be forced into a model out of practicality. For example, a 
platform in the banking or healthcare space may require that apps execute on-platform for 
regulatory reasons, or a platform in the 3D rendering space may host apps on-platform since 
pulling terabytes of data across a REST API is highly inefficient. Platforms often have multiple 
integration models depending upon the use case so multiple strategies can be employed

 How is an additional layer of tenancy going to be handled? Multi-tenancy is old news. Most 
digital offerings have a logical customer definition (e.g. tenant) and we know how to 
architecturally handle tenancy (despite it still being complex). Depending on how (1) is answered, 
a platform provider may need to now define the execution context as a pairing of the end user 
customer tenant context coupled with the context of the 3rd-party application provider. For 
example, imagine customer 1 is a user of the digital product at the center (the “core app”) of 
the platform, but also a user of two ecosystem apps: app A and app B. The core app may have 
some sort of report or component injected into its runtime by app A, but not by app B 
(because the user may not have authorization to access some widget in app B).

 How

https://nuvalence.io


NUVALENCE.AI 5The Anatomy of a Digital Platform

 Are per tenant operational controls and diagnostics needed, or are those needs 
exclusively at the application layer? Depending on the use case, a digital platform may need 
to intersect application and tenant context with operational controls and diagnostic needs. 
For example, if a tenant is using an application on the platform and is also using a 3rd-party 
extension to the app, does the platform need to provide tracing and debugging information 
on a per request basis with contextual information related to the tenant and application(s)? If 
so, will the platform trace requests across application boundaries and microservices, 
maintaining diagnostic context throughout

 Where is the security boundary for data and for entitled access to workflows? A platform 
may need to provide 3rd parties access to some data, or all data. If the answer is some data, 
the platform will have to provide a means to grant rights to 3rd-party apps to access data 
and workflows. Data access rights may be coarse or fine-grained in nature, with the platform 
bearing responsibility for balancing appropriate access with use-case enablement

 Is the platform responsible for aggregating data sources and/or providing data lineage 
and data quality guarantees? Coupled with the question of data access and security, if the 
platform is aggregating multiple data sources, the platform may need to provide tenant apps 
with guarantees regarding data quality, data lineage, etc. Without guarantees, tenant app 
developers may not be able to pursue certain use cases but liability may be lower for the 
platform provider. Guarantees may maximize platform utility but could increase liability for 
the platform provider

 Is the platform going to provide a comprehensive SDK, or instead, a collection of APIs? 
This is part driven by necessity, part driven by intended value. The platform, by its very 
nature, may require custom testing frameworks, simulators, command line tools, etc., 
especially if its goal is to accelerate development. On the other hand, that may create too 
much complexity (for both the platform creator and the 3rd-party developer) if it isn’t 
required and where a set of APIs will be sufficient

 How will the application handle inorganic increases in load? Exposing an app to value 
extension by 3rd parties may cause meaningful, rapid increases or fluctuations in load. 
Where a digital product may be able to have a quasi-predictable scale model in place, once 
demand is democratized, that predictability is lost. This puts pressure on the platform 
provider to tightly control resource allocation, which can be handled through simple planning 
or may require an extensible, custom scheduler (which partly depends on decision around 
“execution model”)

 Who is responsible for facilitating the monetization, quality, and trust of newly created 
applications? In an ecosystem where a digital platform sits at the center, end-users identify 
themselves as customers of the platform rather than customers of each individual offering 
they subscribe to. The platform provider owns the relationship with the customer, and the 
customer views the provider as the vendor of record.
 

The tenancy model now becomes a tenancy matrix, significantly increasing architectural 
complexity, but potentially delivering massive end user value.


 Are

 Where

 Is

 Is

 How

 Who

Once 3rd-party applications are introduced, some customers might expect that paying for 
3rd-party value happens through the digital platform provider, and not directly with the 3rd 
parties themselves. This is particularly true if end-users view the platform as an arbiter of 
trust and quality for 3rd-party apps.

https://nuvalence.io


NUVALENCE.AI 6The Anatomy of a Digital Platform

A digital platform provider needs to determine if it will: (a) supply its ecosystem of 3rd-party 
apps with billing and payment facilities and simply “cut a check” to 3rd-party app providers 
on a regular basis for any sales or (b) if its expected that those 3rd-party app providers deal 
with billing themselves and choose from a best-of-breed billing provider.

This list is nowhere near exhaustive, but one can easily imagine that the answers to these 
questions have a huge impact on the architecture. Now onto the next definitional characteristic:

This characteristic is more nuanced but equally important. A platform provider needs to 
determine how flexible it wants the platform to be. Flexibility can be measured through how 
open the platform is to non-standard use. For example, take Excel and how broadly its flexibility 
has been exploited across use cases. A digital platform provider needs to answer some key 
questions related to what it means by “use case” when designing the platform’s architecture

 Should the platform accumulate data of indeterminate value to enable yet to be 
understood use cases? A platform's central nature allows it to have access to broad user 
data and behavior. Some platforms may choose to collect the minimum necessary data for 
powering known use cases. Other platforms may want to broadly accumulate data and 
telemetry from end-users despite not having an immediate use for it yet. For example, a 
digital office suite such as Google Workspace or Microsoft 365 may be interested in tracking 
how many times I misspelled and backspaced my mistakes in this whitepaper, which could be 
used to power future capabilities and features built by 3rd parties. The scope of data 
collection intersected with who that data is made available to impacts customer privacy and 
use case expansion potential:

 Displays flexibility in the range of use cases to which that technology can be applied

 Should

Availability Collect the Minimum 
Necessary Data

Broadly Collect 
Data & Telemetry

Not Made Available to App 
Developers on the Platform

 Most Private, No Use Case 
Expansion Potential

 Somewhat Private
 Some Use Case Expansion 

Potential

Made Available to App 
Developers on the Platform

 Less Private
  Better Use Case Expansion 

Potential

 Least Private
  Most Use Case Expansion 

Potential

If this sort of data is collected, the platform provider needs to balance privacy concerns with 
maximizing flexibility.


https://nuvalence.io


NUVALENCE.AI 7The Anatomy of a Digital Platform

 Should the platform consider future form factors? While 15-20 years ago, all we really had 
was the browser, now, new form factors are being introduced regularly. We added mobile, 
wearables, voice systems (think Alexa, Siri, or Google Assistant), VR and AR, and a number of 
yet to be discovered modes of interaction. A platform needs to understand how it believes 
its value will be exercised in the future and prepare for it (e.g. how to store data so it’s more 
readily useful in other form factors, or how to organize its APIs to account for differences in 
potential API consumption)

 How much configurability should the platform offer and what boundaries should it set? A 
platform needs to decide what level of configurability it will afford to its applications, and what 
boundaries, if any, it will impose on an application's ability to execute based on this configuration. 
If the platform is highly configurable, it will demonstrate flexibility in the app's ability to declare 
needs and expectations: it may allow the application to request elevated access rights to 
resources, leverage a broader set of communications protocols, specify what happens in error 
cases, or decide what sort of versioning approach it wants to use. This comes at a cost of 
architectural complexity to still ensure safety and isolation despite the increased configurability.  

If the platform is less configurable, it may strictly govern surface area and optionality, creating 
constraints for developers but reducing architecture complexity as a result.



This list of questions should help support a fundamental understanding that when moving from 
product to platform, there is a significant increase in architectural and implementation 
complexity. It’s very easy to answer “yes” to all of the questions posed above, but you don’t 
have to build your end state platform in the first iteration. Trying to do so dramatically increases 
the chances of failure. It’s important to note that the two best approaches to building a digital 
platform help reduce this increased complexity by relying on proper sequencing and iteration

 Build then Extract - Build the digital product first and extract the platform from the product. 
This requires carefully crafting the product to be “platform aware.” Platform awareness 
requires that the applications architecture be built with specific cutpoints and abstractions 
in mind, and that the initial implementation can be extracted into a separate, independent 
architectural layer that will serve as the foundation to the platform after the product is 
released

 Build in Parallel - Build the platform and product side-by-side, using the product as a first 
reference application and “customer” of the platform. In this case, the application is designed 
against a series of platform contracts from the beginning, and the work to implement the 
various supporting platform systems is completed at the same time. This leads to both the 
app and platform being released at the same time, which may be critical in certain 
competitive situations and go-to-market scenarios.



“Build then extract” may be less risk but more work in the long run, while “Build in Parallel” may 
be more risk but less work given that it doesn’t require an intermediary extraction project and 
context switch. Generally, the recommended approach is the “Build then Extract” approach 
defined in (1) but there are circumstances where (2) makes the most sense. When using the 
“Build then Extract” approach, the risk and additional work profile is defined by how much 
energy was invested in building the initial offering in a “platform aware” way.

 Should

 How

 Build

 Build

https://nuvalence.io


NUVALENCE.AI 8The Anatomy of a Digital Platform

Irrespective of the approach, the architecture should converge to the same end-state model. To 
help better shape an understanding of this model, the remainder of the white paper will outline 
a reference architecture and high-level example implementation.


Most digital platforms will have a somewhat common set of use-cases and supporting 
architecture despite differences in technology selection and implementation. This allows for the 
definition of a reference substrate (a “digital platform DNA”) that can be shared across specific 
digital platforms and captured as a reference architecture. To help frame this reference 
architecture, let’s define specific feature expectations for a fictitious reference platform named 
“Hub.” Hub will be a platform created with a definitional, anchor B2B application at its core. The 
anchor application will be extended to rely on platform features, making it the platform’s first 
meaningful consumer. Hub will generalize and abstract key functional and architecture patterns 
related to this anchor application so that 3rd-party partner developers can now build and 
deploy client apps to Hub. Hub provides

 APIs, giving client apps access to core workflows and functionality

 The ability to host microservices that power the 3rd-party apps

 A data layer with access to data critical to the use cases supported by Hub

 A frontend framework and execution context, allowing 3rd parties to write Javascript/
Typescript based interfaces that extend the core interface of the anchor app or as 
standalone Hub UIs

 An app publishing system, so apps can be registered in the ecosystem such that end users 
can install those apps to their Hub accounts and start using the applications

 Workflows, allowing end users to self-service their interest and entitlement to the client 
applications.



As discussed earlier, a digital platform is a domain-specific platform that tends to target the 
functional needs of an industry. An infrastructure software layer like Kubernetes may power the 
app-hosting and compute needs of a digital platform, but that’s only a small part of the broader 
functional requirements. Multiple other open source and cloud technologies, along with 
significant bespoke software development, would surround something like Kubernetes to actually 
turn it into a digital platform. To hone in on what technologies we need to use alongside a 
cluster/hosting layer and what sort of custom development we need to undertake to create 
Hub, we’d have to drill in a bit further and outline definitional architecture “characteristics”:


A Generalized Reference Architecture

https://nuvalence.io


NUVALENCE.AI 9The Anatomy of a Digital Platform

Characteristic Architecture Choice Details

Platform Focus Data & Workflow
Hub doesn’t optimize around data or workflows. It sees both as 
equals, so its execution context provides reasonable leverage and 
value around both application layers.

Execution Model Plugin

Hub is taking a “plugin” approach to the client app execution 
model, where client apps run as a “guest” to the platform.



Applications built for Hub run embedded in the core app and 
platform and are designed to implement a narrow interface 
provided by the platform. The app need not worry about 
infrastructure, OS’, or any scaffolding. The app's code is executed 
by the Hub platform and is provided the necessary execution 
resources and hooks. This embedded execution support is for 
frontend UI extensions and a “lambda-like” architecture for basic 
data processing.



Alternative execution models were considered, but based on 
customer expectation and lack of practicality, the plugin model 
offered the best blend of flexibility and productivity.



Additionally, Hub also offers an API execution model for 
externalizing app creation.


Tenancy Nested Multi-
tenancy

Hub has a two-class tenant model: both apps and end-user 
organizations are tenants (app tenants and org tenants, 
respectively), each having context scopes. Hub registers and 
tracks tenants of each class, and allows org tenants to be sub-
scopes of app tenants. This allows Hub to affix data to org tenant 
scopes, app tenant scopes, and to org tenant scopes nested in 
app tenant scopes. For example, App A may have Tenants 1 and 2, 
so A-->1 and A → 2 are different tenant scopes, both under the A 
tenant scope.

Diagnostic Model Coupled App & 
Tenant Contexts

Hub provides trace and debugging information consistent with 
the nested multi-tenancy model that is provided as part of the 
execution context. Any logging and debug information can be 
associated with both the app tenant as well as the org tenant 
whose request was being processed during any diagnostic 
tracing.

Entitlements Data, Features

The platform protects data and workflows via app tenant 
published entitlements and org tenant permissions. That is, app 
tenants express data and workflow access needs to the platform, 
and org tenants grant permissions against those requests.



When an org tenant requests to use a given application, the 
platform will publish that applications access requirements to the 
org tenant, requesting permission to allow the level of access 
requested by the application

Data Guarantees Data Lineage, 
Provenance

Hub can provide app tenants access to data lineage information, 
allowing it to propagate guarantees to end-users. Additionally, any 
allowable data modifications are tracked to ensure provenance.

https://nuvalence.io


NUVALENCE.AI 10The Anatomy of a Digital Platform

Characteristic Architecture Choice Details

Developer 

Surface Area

App APIs, 
Management 

Portals

Nearly all of Hub’s functionality can be accessed via an API, which 
is useful for code executing outside of Hub. Given that Hub can 
host applications, however, it must choose a language/stack that 
will be considered “Hub Native.” Hub will allow developers to 
leverage Javascript & Typescript as first-class languages for 3rd- 
party app development, and those apps can be run directly on 
the platform. Hub will “sandbox” those apps for execution, giving 
the app a runtime context.



No specialized development tools, emulation layers, etc. are 
needed, so Hub provides more of a collection of APIs surrounding 
this sandbox rather than a heavier SDK. Hub also provides 
developers access to portals and APIs for app publishing and 
management.

Scalability Elastic
As load increases, Hub can rely on autonomic scale-out of 
underlying infrastructure. Consequently, it can scale-in on 
diminished load.

Monetization External
Hub does not provide any “app store” or transaction processing 
capabilities. Any monetization needs are left to the 3rd-party 
developer.

Data Collection Central, 
Peripheral

Hub’s developer expects that its users will evolve their usage 
over time. Additionally, Hub’s developer anticipates that 
advancements in machine learning and data analysis will lead to 
significant future increases in value. As a result, Hub not only 
tracks data central to the core use case of its anchor tenant app, 
but also tracks as much peripheral data as possible since it may 
prove valuable to both Hub’s developer and to end-users in the 
future.

Form Factor 
Tuning Web, Mobile

Hub will be focused on current form factors, providing APIs and 
documentation tuned toward Web & Mobile. Optimizations will be 
made for payload size and reducing call frequency so that mobile 
experiences can be optimized for any plugins built for the 
platform.

Configurability/
Boundaries Low/Strict

Hub will enable developers to write plug-in code, but won’t afford 
much configurability outside of what can happen within a plugin’s 
memory space. This reduces the architectural complexity 
associated with policy driven flexibility. 



Hub’s primary goal is to allow plugins to influence the anchor 
app’s data and workflows, expose UI controls to end users, and 
enrich data via external HTTP data sources.  Outside of this 
scope, Hub intends to provide tight boundaries and very little 
configuration.


Hub’s architecture needs to enable these characteristics in addition to the fundamental 
requirement of hosting 3rd-party workloads. Some of these characteristics will wholly exist in a 
single subsystem while others are manifested across multiple components and don’t exist as a 
specific architectural component. Given the requirements for Hub so far, we arrive at a logical 
architecture that looks like this:


https://nuvalence.io


NUVALENCE.AI 11The Anatomy of a Digital Platform

Cloud Infrastructure (AWS, Azure, Google Cloud Platform) 

To better understand this logical architecture, it’s important to understand the role of each 
component, starting from the bottom of the diagram and working up. For each, we provide a 
general description and a non-exhaustive list of technology options

 Cloud Infrastructure - For Hub, there is little value in leveraging any infrastructure other 
than cloud-based (or possibly hybrid) infrastructure. Hub’s use case allows for app-data to 
be loaded into the selected cloud providers data offerings, skirting one of the common 
blockers that would prevent a new platform from leveraging cloud

 Technology Options: AWS, Azure, or Google Cloud Platfor

 Enabled Characteristics: Elastic Scalabilit

 Compute Stack - Hub will leverage a container orchestration service at its core. The choice 
is primarily defined by Hub’s need for a dynamic, programmable infrastructure. This gives 
Hub access to the necessary declarative primitives and APIs to shape infrastructure 
according to the needs of the anchor application and of 3rd-party client applications. Plugins 
will run in isolated execution runtimes (e.g. lambdas) that will be referred to as "Backend 
Isolation Units" or BIUs

 Technology Options: Kubernetes, AWS ECS, Azure CS, Lambd

 Enabled Characteristics: Elastic Scalability, Embedded Execution Contex

 Data Stack - Hub apps rely on a combination of real time data streams from endpoints 
around the globe, infrequently updated unstructured data and relational data provided by 
end users. To handle this, Hub leverages a streaming data ingest framework, loading and 
transformation service, a high performance cache layer, an unstructured document store, 
and a relational database.

 Cloud

 Compute

 Data

a. Technology

a. Technology

b. Enabled

b. Enabled

https://nuvalence.io


 Native Cloud Services - Hub will rely on necessary peripheral services to access any 
commodity functionality it may need, including but not limited to global load balancing, CDN, 
and authentication. This will be unique by use case and deployment model

 Resource Layer API (RLA) - Hub will have its own API for managing resources in a manner 
consistent with its architecture expectations. For example, Hub will have a specific 
expectation of what infrastructure manipulation needs to occur to support a newly published 
plugin. Rather than expose raw cloud and infrastructure APIs to upper portions of the stack, 
the RLA will expose resource management via functions such as ConfigureAppInfrastructure 
(appName:string, ...)

 Tenant Management - The Tenant Management System (TMS) is responsible for storing and 
manipulating tenant meta-data. It defines first class app and org tenants, and manages the 
relationship mapping between them. Its duties include managing tenant onboarding and 
offboarding, tenant context establishment and manipulation, and tenant record maintenance

 Entitlements System - The Entitlements System provides intra and inter app entitlements 
management. Through this system, the platform tracks what tenants are allowed to use 
what apps, what apps can communicate with what apps, and what features within an app 
each tenant user has access to. Additionally, the system provides data entitlement 
registration mechanisms to describe what data each application has access to.  

The system exposes APIs to manipulate entitlement mappings as well as to compute 
entitlement claims and grants. This gives app developers the power to weave entitlement 
declarations and logic into their app stack

 Application Management - This system provides app deployment, registration, and 
manipulation functionality for tenant applications. Hub relies on this system for app 
management and monitoring needs. The system provides (1) abstract information about app 
status and debugging/tracing information and (2) exposes controls for registering the 
application in an “app store” like context so they can control how end-users get access to 
and consume the application

 Data Management - Applications tend to rely on multiple data sources. Hub provides core 
“domain specific” data to the app developers (e.g. banking or healthcare data if Hub were the 
core platform for a company in that space). 

NUVALENCE.AI 12The Anatomy of a Digital Platform

b. Enabled

 Native

 Entitlements

 Application

 Data

 Resource

 Tenant

 Technology Options:

 Streaming Data Ingest/Distribution: AWS Kinesis, Kafka, Microsoft Event Hub, Google 
Pub/Su

 Relational Database: Postgres, MariaDB (managed cloud instances preferred

 Document Database: AWS DynamoDB, Microsoft CosmosDB, Cassandra 

Enabled Characteristics: Elastic Scalability, Data Lineage & Provenance, Central & Peripheral 
Data Collection

The Data Management system allows developers to describe their data needs, giving the 
platform information it can use to properly curate and entitle access to data needed by the 
application. This layer interacts with the entitlement system as a mechanism to guarantee 
proper access rights. Additionally, apps can register for custom data streams so the app 
receives only the data it needs for its use cases.

https://nuvalence.io


 Ecosystem API - Rather than exposing subsystems directly to plugin app tenants, apps 
interact with the Hub via this curated and controlled API layer. The Ecosystem API 
aggregates and exposes functions to app tenants via a single surface area that’s organized 
functionally and well documented. The API is not public, but instead, is available only to 
authorized plugins

 Business Ops Tooling - Hub recognizes that a number of the people who manage 3rd-party 
app interactions are not technical (e.g. customer service staff, sales staff) and provides 
portals (and APIs where appropriate) exposing high level business controls to those 
individuals. This is useful for managing support desks, investigating app status in the context 
of business workflows (e.g. activating access to a deployed app when end users manually 
submit payment for an app, deactivating on lapsed payment, etc.)

 Ecosystem Portals - Hub may provide end users with a portal that contains self help guides, 
generalized Hub support desk functionality, etc. These portals can be as shallow or as dense 
as required by the Hub business model, and may or may not include surface area related to 
specific 3rd-party applications.



This logical architecture provides comprehensive coverage for the general expectations and 
behaviors for Hub. While useful, setting the direction for Hub’s implementation requires a finer 
grained reference component & systems architecture:


NUVALENCE.AI 13The Anatomy of a Digital Platform

 Ecosystem

 Business

 Ecosystem

Implementing a systems architecture similar to this one will likely be an exercise that combines 
developing some of this architecture “from scratch” with incorporating some best-in-class OSS 
components and cloud services. In practice, an architecture like the one proposed for Hub is 
just a starting point. 



The most important takeaway is that moving from product to platform requires an architecture 
similar to this one as an addition to the apps domain specific architecture. A number of domain

https://nuvalence.io


NUVALENCE.AI 14The Anatomy of a Digital Platform

and model specific components would expand this architecture significantly, resulting in a final 
architecture that is well-aligned with the platform outcome necessary for winning over the 
target ecosystem.


As you initiate your digital platform journey, it’s important to take stock of the goals that your 
partners and end users have, and use those goals to shape the platform functionality needed to 
allow for rapid innovation around your core offering. There is no "one size fits all” approach to 
building digital platforms. Every business and every team is unique with its own set of priorities, 
constraints, skill sets and timelines. Hopefully this paper has given you a framework for getting 
started.


Conclusion

ABOUT NUvalence

Nuvalence is a next-generation consulting firm specializing 
in mission-critical, intelligent platforms for the world’s 
most ambitious organizations.



Using our product-driven, AI-centric approach, we 
empower organizations to build for the intelligent digital 
future. Our elite team of product leaders, data scientists, 
designers, and software engineers enables our clients to 
solve their most complex technology product challenges 
and positively impact people and the world.



We don’t just deliver software, we deliver outcomes.

© 2023 Nuvalence, LLC. All rights reserved. This document is for informational purposes only. Nuvalence, LLC makes no warranties, 
express or implied, with respect to the information presented here.

https://nuvalence.io

	The Anatomy of a Digital Platform
	PAGE 2
	PAGE 3
	PAGE 4
	PAGE 5
	PAGE 6
	PAGE 7
	PAGE 8
	PAGE 9
	PAGE 10
	PAGE 11
	PAGE 12
	PAGE 13
	PAGE 14
	PAGE 15



